
GUIDE MARCH 2016

Application Security
Buyer’s Guide
A practical handbook for selecting the right tools and vendors

Table of
contents
Securing code made harder by changing development
Selling the secure development lifecycle
Take stock and just get started
Three classes of tools for your developers
SAST, DAST, IAST: A lot of choices

4
5
6
7
14

Application Security Buyer’s Guide 03

Statements about your current status
Questions for vendors

16
17

Model Request for Proposal (RFP) 15

More companies are seeing the benefits of secure development and relying on
application security tools to lock down their application portfolio. This guide
takes an in-depth look at the tools and the best way to create a mature and
secure development program.

In 2015, Adobe patched more than 300 security vulnerabilities in its
Flash player, a ubiquitous piece of software that enables interactivity and
multimedia in browsers on the Internet. This was not just an act of good
software hygiene— Flash vulnerabilities have real-world consequences. They
have become the most popular way to exploit and take over users’ machines,
accounting for eight of the ten most used exploits to compromise systems,
according to data science firm Recorded Future.

The travails of Adobe show the danger of software bugs and the importance
of application security testing. Yet exorcising bugs is typically given short
shrift within companies. It is a hard task, even when a company has focused on
eliminating software flaws in its products.

Application Security
Buyer’s Guide

3

This guide will briefly describe why application security presents special
challenges for organizations, even those that have made significant
investments in network and endpoint security. It will describe these challenges
in terms of actual experiences teams have faced, and it will include steps
organizations can take to move toward app sec best practices. It will also
describe the essential classes of technologies that have proved useful in
support of those practices.

And it concludes with a separate step-by-step guide to creating an RFP for
readers actively seeking app sec vendors and tools.

Securing code made harder by changing
development
While most businesses have invested in network and endpoint security, taking
measures to ensure that applications are both designed and coded in a secure
way is much less common. Those measures require both management and
developer approval. In a recent survey, 56% of corporate security teams had a
security information and event management (SIEM) system in place, while only
a third used either static or dynamic application security testing, according to
data from analyst firm 451 Group.

“We are overspending in antivirus and firewall and not enough in applications,
which is what all the attacks are targeting,” says Jeremiah Grossman, co-
founder and former CEO of Whitehat Security, a web-application security firm.

That’s beginning to change. Companies are increasingly signing on to secure
development. Over the past decade, vendors have moved to make application-
security testing easier; they’re automating much of the manual work and
adding security expertise to the software to reduce the reliance on security
professionals.

Yet a number of problems continue to plague the sector:

• False positives continue to create work for security professionals and
 developers who have to rule out the alert
• Many types of vulnerabilities still escape detection
• More accurate systems tend to take longer to run, slowing development

4

Application Security Buyer’s Guide

Vendors have moved to make

application-security testing

easier; they’re automating

much of the manual work and

adding security expertise…

Yet a number of problems

continue to plague the sector.

Because of the complexity of tools, the difficulty in getting developers to add
steps to their coding process, and an overall lack of focus on security, most
companies are only dipping their toes into the water.

The situation is made more complex because developers are changing the
way they are creating software. Traditional waterfall development practices
engineered the application up front, with design mandates that flowed down
to the coders. Developers had months, even years, to produce working
software, which gave the security team natural breaks during which they
could review the code. But newer agile and DevOps models using short- or
continuous-development cycles aim to create a fast feedback loop on the
order of days, if not less. The shortening development cycle is a problem for
security teams looking to implement application-security testing.

Selling the secure development lifecycle
In 2015, a transoceanic shipping firm regularly faced pirates boarding its ships
traveling near Singapore toward the Indian Ocean. The pirates knew which
containers to open and where to find the most valuable items, typically gems
and jewelry. How did they know where to look? Verizon, which responds to
cyber-security incidents, found that the company “used a homegrown CMS
[content management system] to manage inventories,” and that the hackers
had used a vulnerability in the system to get access to bills of lading.

While companies typically do not have to deal with sea pirates, the incident
underscores that vulnerabilities can cost real money. For those companies that
make the effort, the savings can be significant.

Healthcare company Aetna, for example, has more than 3,000 applications
in development, two-thirds of which are written in Java, with much of
the remainder written in .NET and Ruby. Keeping the developers of those
applications focused on security is tough, but it can result in significant cost
savings, says Jim Routh, the company’s chief information security officer.

“Our whole software security program is predicated on the objective of
reducing the total cost of ownership of the application portfolio,” Routh says.
“We try to prevent as many defects as we can, and we try to fix as many bugs
as well as we can, and that ends up creating a productivity gain of 20 to 50
percent.”

5

JAVA

60% 30%

.NET &
RUBY

Applications being
developed at Aetna

Application Security Buyer’s Guide

Take stock and just get started
To determine which path is right, companies first need to take stock of their
current software security practices. Unfortunately, many companies don’t
know where they stand, says Chris Wysopal, chief technology officer and co-
founder of application security firm Veracode.

“Sometimes you talk to the security people and they say their developers are
doing application security,” Wysopal says. “The security team thinks something
is happening, but in reality, the tools and processes are not being used by the
developers.”

Too often, companies will buy an application security testing tool or subscribe
to a service, vet two or three applications, and then stop. Problems arise
when they try to use the results produced by the tools or try to expand their
coverage to their entire portfolio, says Dan Cornell, chief technology officer
for the Denim Group, a security-testing consultancy.

“Even after you get an application under testing, often no one knows what to
do with the results,” he says. “The interpretation, the prioritization—all of that
is a real challenge.”

Maturity takes time

Improving application security is an ongoing, massive undertaking, one that
companies should not think of as a time-boxed project. Developing a mature
security development lifecycle requires time and many iterations. In particular,
getting teams working together and using the available tools is, in some ways,
more critical than selecting the right tools. Strong programs are built on
accountability and communication, says Mike Spanbauer, vice president of
research at NSS Labs.

“Enterprises must find a way to work closely between those two teams,” he
says. “Often the dev teams says, ‘That’s not my problem,’ that it’s the security
team who’s responsible to fix that. But they can’t protect the environment
optimally unless they know which hooks, libraries, and code are used by the
developers.”

6

Application Security Buyer’s Guide

“[Security] can’t
protect the
environment
optimally unless
they know which
hooks, libraries,
and code are
used by the
developers.”

Mike Spanbauer,
vice president of research,
NSS Labs

BACK TO
THE INDEX

For many companies, a good first step is to take stock of their application
portfolio and determine which third-party libraries and components are used
by developers. Development teams may not adequately track the versions
of the libraries embedded in their code, but they should know when a
vulnerability is released in a library that they use in their development, and
which applications are affected.

“Being able to quickly index which library’s components you have allows you
to then leverage other information sources, [which means] you don’t have
to do the homework yourself,” says Spanbauer. “You can quickly determine
whether that piece of vulnerable software is one that you are using.”

Expanding coverage

Once companies get testing tools running for a few applications, they should
broaden their efforts to the company’s full portfolio. As part of the expansion,
companies should track a few important metrics, such as what portion of
their application portfolio is under testing, as well as what percentage of
vulnerabilities are either remediated or have a workaround, according to
Denim Group’s Cornell.

“It is less about the specific technology and more about just getting that
workflow operating,” Cornell says.

As part of this step, companies need to take stock of all their applications
and who is lead developer on each. While top-down requirements for
development groups to use specific tools can work, often it works better to
offer the developers a specific menu of security tools and options and let them
use whatever tool best fits their purpose.

Three classes of tools for your developers
Any company developing software as a product, a service, or for internal use
should be focusing on software security, but there is no one perfect way to
embark on developing, or improving, a secure development lifecycle.

7

Application Security Buyer’s Guide

BACK TO
THE INDEX

Some companies need to focus on their developers, adding static application
security testing (SAST) to the development cycle to catch potential flaws
early. Other organizations may want to prove their need by using dynamic
application security testing (DAST) or penetration testing to show how
vulnerable their applications are. Interactive application security testing (IAST)
uses agents and additional software libraries to collect data from running
applications that can then reveal vulnerabilities. Companies that want to
“virtually patch” their applications can lock down their portfolios using some
form of application firewall or a newer technology, such as runtime application
self-protection (RASP), a form of IAST.

The following information outlines the benefits and potential drawbacks of
each of the three technology classes noted above. (A list of vendors and their
products is included; and a model request for proposal for contacting vendors
is provided later in this guide.)

1. Static Application Security Testing:
Eliminate vulnerabilities early

The front line of secure code development tends to be static application
security testing (SAST) tools—software programs that scan source code to
find known patterns of vulnerabilities. These tools are increasingly being
provided to developers as the first step toward weeding out the most obvious
vulnerabilities from their code.

SAST tools have a bad reputation for producing too many alerts for minor
software flaws and unexploitable defects and for finding only narrow
classes of bugs. Nonetheless, the tools are an important part of any secure
development lifecycle because they can be integrated into the development
environment, preventing developers from making fundamental security errors
that could produce vulnerabilities and teaching them to avoid making similar
mistakes in the future.

Eliminating vulnerabilities during development saves money. Estimates range
from a low of 20% up to a high of 100% savings, if a defect is caught at the
initial design level. “The cheapest place to find bugs is early in the secure
development lifecycle,” says Daniel Kennedy, research director for information
security at the 451 Group.

8

Application Security Buyer’s Guide

“The cheapest
place to find
bugs is early
in the secure
development
lifecycle,”

Daniel Kennedy,
research director for
security, 451 Group

BACK TO
THE INDEX

Integrate automated code checking into
development cycle

A very important quality of any SAST tool is how well it integrates into the
company’s existing development environments. Most tools support the major
web languages, Java and .Net. Static tools generally also support some form of
C, C++, or C#.

In addition to supporting the language that your development team uses, the
tools have to seamlessly plug into the most common integrated development
environments (IDEs).

“The developer is extremely busy,” says IBM VP Ravi Srinivasan, who’s
responsible for network security offerings. “They don’t want to have to go to a
separate program to run application security testing.”

SAST is not just about catching bugs

A SAST system’s most common user should be the developer. The best
tools provide feedback to teach the developers how to use secure software
patterns, avoid code libraries deemed to be too insecure or infrequently
patched, and explicitly explain how to repair any potential vulnerabilities.

Providing developers with simple-to-use static analysis tools that can check
their code quickly and provide easy-to-understand feedback pays dividends
down the road. Aetna, for example, found that developers using static analysis
tools learned to produce more secure code.

“What we learned is that the defect density drops significantly when
developers use static analysis tools,” Aetna’s Routh says. “They are actually
learning how to avoid defects on their next project, and it is the most valuable
tool in teaching developers secure coding practices.”

9

Application Security Buyer’s Guide

“The defect
density drops
significantly when
developers use
static analysis
tools.”

Jim Routh,
chief information security
officer, Aetna

BACK TO
THE INDEX

Strike a balance between SAST false positives and
developer goodwill

Today’s application security testing tools are getting more comprehensive,
but they still require developers and security professionals to weed out false
positives. In some way, the greater depth of testing presents its own problems,
says Denim Group’s Dan Cornell.

“A lot of static vendors were trying to get the most results, but what people
realize now is that there is a tax that comes along with all the stuff you found,”
he says. “So finding more stuff is not necessarily good. If I find too much stuff, I
have to wade around in all the results to find what is really important.”

The issue can be critical for companies focused on an agile or DevOps model,
who may find that static analysis tools take too long to run to be used in daily
development, Aetna’s Routh says.

“The longer it takes to run, the more difficult it is and the longer it takes
security people to weed out the false positives and the less integrate-able it is
with the development cycle,” he says.

2. Dynamic Application Security Testing: Finding
exploitable vulnerabilities

Companies can take a more strategic approach to testing by using DAST.
Also known as “black-box testing,” dynamic analysis tests for various types of
vulnerabilities against running applications.

The choice between adopting static or dynamic analysis tools first depends
on a company’s situation. Static analysis tools give developers feedback and
educate them at the same time. Dynamic analysis tools can give security
teams a quick win by immediately finding exploitable vulnerabilities.

In most cases, companies should run both. Static- and dynamic-analysis
tools plug into the development process in different places. Static tools
should be run as often as is practical and give feedback directly to the
developer, allowing managers and the security team to monitor the progress
of developers in eliminating bugs. DAST should be done less often and by
dedicated security and quality-assurance professionals.

10

Application Security Buyer’s Guide

Dynamic analysis tools can

give security teams a quick

win by immediately finding

exploitable vulnerabilities.

BACK TO
THE INDEX

While DAST is typically suited to a waterfall development approach, agile and
DevOps development can benefit as well, says Aetna’s Routh.

“Dynamic scanning is something that you apply after you have a runtime
version of the software,” he says. “Dynamic scanning is typically done by the
QA teams. In a Scrum team, there may be a designated QA team that is part of
each sprint, but they are not the developers.”

Dynamic analysis can help find assets

The first step for most companies is to make sure they know which
applications are running on their network. Companies that embark on a new
application-security initiative can tie network scanning into the DAST process.
This requires first searching the network for applications, then testing those
applications for vulnerabilities. The process can help security teams stay
on top of unknown and rogue applications, says Frank Catucci, application-
security manager for Qualys, a network and application security firm.

“A lot of customers who come to us say they know what they need for
applications security, but they have so much that is out there running, there
may be Web services that they are not be aware of,” he says.

By asking a few simple questions, companies can better understand their
software security status quo. Security groups should first figure out how many
web applications they have running, says Jeremiah Grossman.

“Most companies do not know what they own, and that is a major issue,” he
says. “Down the road, when they get hacked, when they get compromised,
it is almost always because of a vulnerability in a web site they did not know
about.”

Build DAST into the quality assurance phase

While static code analysis can find bad patterns in code and teach developers
more secure coding techniques, DAST is about catching exploitable
vulnerabilities before they get into a production environment. Development
groups and security teams should build a dynamic testing phase into the pre-
release quality assurance phase of any secure development lifecycle.

11

Application Security Buyer’s Guide

“Most companies
do not know
what they own…
When they get
hacked, it is
almost always
because of a
vulnerability in a
web site they did
not know about.”

Jeremiah Grossman,
co-founder and former
CEO, Whitehat Security

BACK TO
THE INDEX

The goal is not about finding every vulnerability, but to find the most
exploitable issues, says Jeremiah Grossman.

“You don’t want a mess of vulnerabilities in production, so you use SAST to
rid yourself of those as much as you can,” he says. “But not all vulnerabilities
are available to attackers; there are a lot of vulnerabilities that do not pose
a threat. That is what DAST is for—finding vulnerabilities relative to the bad
guys, where there are no more rules.”

Shorten testing and remediation time

Testing takes time, and making sense of the results of that testing can
take even more time. While false positives are less of an issue for dynamic
application security testing, security teams and developers should focus on
evaluating each product’s ability to quickly test for a required set of potential
vulnerabilities and produce reports that succinctly tell developers how to fix
the problems.

Time becomes an even bigger issue for development groups focused on a
DevOps model of software development and deployment. Such groups have
to automate more and push the testing to earlier in the process, making time
a critical factor, says Adrian Lane, chief technology officer for Securosis, a
security consultancy.

“It changes the way we test, and it forces companies to build a lot of their
own infrastructure,” he says. “So a big question is whether you can use an
API to script and automate the testing, not just integrate with the developer
systems.”

3. IAST, including RASP: Protecting code against
exploits and known bugs

While static code analysis arrived about two decades ago and dynamic
analysis has become popular over the last decade, a new approach—known as
interactive application security testing (IAST) or “glass-box” testing—promises
to catch attacks that the other approaches cannot. By running an agent, IAST
allows companies to collect event data from their running applications for
analysis.

12

Application Security Buyer’s Guide

IAST promises to catch

attacks that the other

approaches cannot.

BACK TO
THE INDEX

Jeff Williams, chief technology officer of Contrast Security and a pioneer of
the approach, argues that both static and dynamic analysis fail to catch many
types of vulnerabilities that affect applications. IAST can help to better secure
the software, he says.

“Bottom line for me is that dynamic and static tools have been around for over
a decade without improving and are not likely to improve,” he says. “It’s a huge
problem that prevents doing application security at scale and leaves us all
vulnerable.”

The promise of software agents

The key of interactive analysis is turning the application into a tool that also
works for security. Either by installing software agents on an application
server, or by instrumenting the application at development time, interactive
analysis techniques allow the collection of data on application and security
events.

The data can detect software flaws that other techniques would miss. In
addition, combining agent-based instrumentation of applications with code
analysis and dynamic scanning can help reduce false positives and give
developers a better idea of where vulnerabilities exist in their code.

“I’ve always disliked the idea that security makes things less efficient,”
Contrast’s Williams says. “Security is an enabler. Done right, application
security technology speeds software development and operations by
providing continuous, accurate, useful information in real time and at scale.”

Got legacy apps? Protect them with RASP

The same agents and libraries that can be used to detect the signs of
vulnerabilities in programs can also block bad behavior—a likely sign of an
attack. The use of runtime application self-protection (RASP) technology can
prevent attacks and deliver immediate benefits to companies. For security
teams that need to protect applications that may not be actively developed,
an application firewall or runtime application self-protection (RASP) agent may
work well. RASP is best thought of as a specific type of IAST.

13

Application Security Buyer’s Guide

“Security is
an enabler.
Done right, [it]
speeds software
development
and operations
by providing
continuous,
accurate, useful
information in
real time and at
scale.”

Jeff Williams,
CTO, Contrast Security

BACK TO
THE INDEX

“RASP sits inside applications and can monitor and block vulnerabilities,” says
Maria Bledsoe, a senior manager with HP Enterprise’s security products group.
“RASP is a compensating control.”

Pilot an IAST program

Because IAST is a relatively new technology, companies should pilot a tool to
determine if it’s right for their development programs. More mature security
teams are already piloting IAST efforts. Aetna, for example, will likely deploy
the technology in a year.

“We see it as something that we are definitely doing,” says Jim Routh, CISO
of Aetna. “So we are going through a process of evaluating the products. The
tools are relatively immature, but they are promising.”

SAST, DAST, IAST: A lot of choices
Most security experts agree that there is a role for all three technologies:
static, dynamic, and interactive analysis.

While static analysis aims to help developers produce better and more
secure code, dynamic analysis heads off exploitable vulnerabilities before
they are released. IAST instruments an application so that information about
potential malicious activity can be gathered while the software is running. And
some IAST systems also block the attack, which is the function of runtime
application self-protection, or RASP, technique described above.

In the end, how a company proceeds in adopting application security testing
tools depends on how mature its efforts are in creating a secure development
lifecycle, what type of software is under development, and the resources the
company can dedicate to the effort.

In implementing security development lifecycles at six different organizations,
NCR’s enterprise security architect Nir Valtman has learned that progress is
what’s most important.

“Whether you have SAST or DAST or IAST, it doesn’t matter how many bugs
you have at the moment,” Valtman says. “The only thing that matters is the
trending chart—reducing the number of bugs that you have.”

14

Application Security Buyer’s Guide

“SAST or DAST
or IAST … The
only thing that
matters is the
trending chart—
reducing the
number of bugs
that you have.”

Nir Valtman,
enterprise security
architect, NCR

BACK TO
THE INDEX

Companies looking to query vendors about potential tools and services for
application security can use this guide in creating a request for proposal.

While there are a lot of questions in this model RFP, companies should choose
no more than ten that are critical to their business. Rather than waiting for the
perfect product, companies should find the one that best matches their most
important criteria.

Why narrow your RFP to a ten or fewer questions? Because organizations
that send out a laundry list of requirements run the risk of distorting their
acquisition process. There are dozens and dozens of potential requirements,
and in their proposals vendors will likely describe how their product meets
each of them. You will have too much to sort through, and comparing one
proposal to another will become an arduous if not impossible task. Companies
should instead focus on the 5 to 10 requirements that are most important for
their implementation and compare vendors on the basis of those issues.

Other good RFP examples you might explore include:

• OWASP’s Application Security Verification (RFP-Criteria)
• Veracode’s Sample RFP for Application Security Scanning Tool Selection

Guide to creating an RFP for
application security testing
tools and services

15

While there are a lot of

questions in this model RFP,

companies should choose no

more than ten that are critical

to their business.

BACK TO
THE INDEX

Statements about your current status
Typically, an RFP includes a few up-front statements to clarify the security
context for vendors. Consider writing a statement of goals and concerns and a
statement of resources, as described below.

Statement of goals and concerns

Many model RFPs start with a statement of a company’s goals—in this case,
security goals. But often, when companies embark on an initiative to improve
the security of their development process, the company’s security effort is
not mature enough to state firm goals. Instead, companies should focus on
highlighting their security problems.

So, state your goals for application security testing if you can do this, but
most important is that you clearly state the greatest concerns for company
management.

Goals should include:
Services

Manual code review
Manual penetration testing
Analysis of security design and architecture
Threat modeling

Products or services
Automated code review (static analysis)
Automated penetration tests and vulnerability assessments (dynamic
analysis)
Automated analysis of instrumented applications (interactive analysis)

Because vendors and service providers will often act in the role of a partner or
provider, companies should also state their problems, which will aid vendors in
determining if unasked-for services or products may be a better fit. Here are
examples of some potential problems:

16

Application Security Buyer’s Guide

Often, the company’s

security effort is not mature

enough to state firm goals.

Instead, companies should

focus on highlighting their

security problems.

BACK TO
THE INDEX

17

Application Security Buyer’s Guide

Our SIEM system detected significant vulnerabilities in our applications
that we need to remediate
A penetration test has found security problems in an Internet-facing
application
We only partially cover our application portfolio
Our developers continue to make the same coding mistakes that lead to
vulnerabilities

Statement of resources

In addition, companies have to determine what resources and capabilities they
have to bring to bear on the problem:

How much security expertise do they have and how many full-time
employees (FTEs) can they dedicate to application security?
How many websites or applications do they have to secure?
How many developers will need to work with the tools?

Questions for vendors
The remainder of your RFP should focus on the dozen, or fewer, questions
that get to the heart of your requirements. Use one or more queries from each
of the following six categories to build out your RFP. Obviously, you should
tailor your queries to fit your situation.

1. Vendor information

Purpose: To gather basic information about the vendor’s company.

Describe your company, its history, and its security focus.
Who is the primary contact for sales? Who is the primary contact for
technical questions?
Do you have reference clients that can be contacted?

Companies should also state

their problems, which will

aid vendors in determining

if unasked-for services or

products may be a better fit.

BACK TO
THE INDEX

2. Products, services, and expertise

Purpose: Discussion of products and services offered; the vendor’s approach
to application security testing; and what innovations the vendor offers.

List your products and their coverage of languages and development
environments. What is their primary category: SAST, DAST, IAST, or
RASP?
Is your product or service offered on-premises, as a cloud service, or as a
hybrid solution?
What are the strengths of your product or service? What is its valid flaw
(true positive) rate?
What are the weaknesses of your product or service? What is the false
positive rate?
Which applications and programming languages can be tested? What
development environments do you support?
What are the core features or innovations that separate your product
from others?
How often do you release new versions or update the software for new
classes of vulnerabilities?

3. Deployment

Purpose: These questions are designed to gauge the level of investments—in
money and manpower—needed to deploy and maintain a system. Flexible
deployment models are in demand.

Does the application security testing require an on-premises capital
investment?
How quickly does it take to deploy the system? How long does it take to
add an application to the security tests?
Can geographically distributed development groups easily use the
product or services? Please describe how.
Does deployment require a consulting engagement? What other services
do you offer before, during, or following deployment?
What is the pricing model used? Please provide estimates for the
following use case. (DESCRIBE A TYPICAL USE CASE.)
Does deployment require a support contract? What are the terms of your
support contracts?

18

Application Security Buyer’s Guide

Ask your vendor: What are

the strengths of your product

or service? What is its valid

flaw (true positive) rate?

BACK TO
THE INDEX

4. Operations

Purpose: This section characterizes the day-to-day operations, costs, and
resource requirements of running the software or service.

How long does the tool take to run? Will it slow down my development
process? Is it appropriate for DevOps or agile development?
Can the tool be run by individual developers? Is it run as part of the
development process or as part of the QA process?
How easily can the product be managed? Approximately how many full-
time employees (FTEs) does it take to manage?
How can learning (data output and analysis) from the system be
incorporated into our development lifecycle?

5. Reporting, interoperability, and integration

Purpose: The major deliverable from application security testing systems is
vulnerability information. This section focuses on how that information is
delivered.

What types of reports do you offer and who are the consumers

(developers, security, management) of each one?
What information can be included in each report? Do vulnerability
reports give detailed instructions on how to mitigate the vulnerability in
a way that can be understood by a developer?
Do the reports provide historical trends and key benchmarks regarding
the remediation of vulnerabilities?
Does it provide such data in a format easily digestible by security
information and event management (SIEM) systems and other security
tools?
Do vulnerability reports describe the specific steps needed for
developers to remediate discovered vulnerabilities and steps to detect if
the vulnerability has been closed?
Does your product use or support APIs to directly communicate results
with other security and IT management technology?

19

Application Security Buyer’s Guide

How easily can your product

be managed? Approximately

how many fulltime

employees (FTEs) does it

take?

BACK TO
THE INDEX

6. Privacy and data security

Purpose: Source code is a sensitive business asset. This section asks vendors
how that information is protected.

How is source code handled and secured?
What types of encryption do you use and what data is encrypted?
Do you offer a private key system where the encryption keys can be
managed by our company?
Do you keep data on our usage of the tools and other corporate sensitive
data? What sort of security and privacy guarantees can you make?

Focus on your most critical needs
As you think through the information presented above to create an RFP, be
sure to tailor it to your specific needs. Don’t just send out all the questions
provided in the six areas of enquiry! As noted earlier, pare your questions
down to 10 critical requirements for your desired application security
capabilities. Vendors will appreciate your laser focus, and the proposals you
receive will be much easier to compare as you narrow your candidates.

Good luck!

20

Application Security Buyer’s Guide

Pare your questions down

to 10 critical requirements…

and the proposals you

receive will be much easier to

compare as you narrow your

candidates.

	Index
	AppSecBuyers
	RFP

